Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Intensive Care ; 11(1): 35, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537685

RESUMO

BACKGROUND: Despite the understanding of sepsis-induced extracellular vesicles (EVs), such as exosomes, and their role in intercellular communication during sepsis, little is known about EV contents such as microRNA (miRNA), which modulate important cellular processes contributing to sepsis in body fluids. This study aimed to analyze the differential expression of exosomal miRNAs in plasma samples collected from sepsis patients and healthy controls, and to identify potential miRNA regulatory pathways contributing to sepsis pathogenesis. METHODS: Quantitative real-time PCR-based microarrays were used to profile plasma exosomal miRNA expression levels in 135 patients with sepsis and 11 healthy controls from an ongoing prospective registry of critically ill adult patients admitted to the intensive care unit. The identified exosomal miRNAs were tested in an external validation cohort (35 sepsis patients and 10 healthy controls). And then, functional enrichment analyses of gene ontology, KEGG pathway analysis, and protein-protein interaction network and cluster analyses were performed based on the potential target genes of the grouped miRNAs. Finally, to evaluate the performance of the identified exosomal miRNAs in predicting in-hospital and 90-day mortalities of sepsis patients, receiver operating characteristic curve (ROC) and Kaplan-Meier analyses were performed. RESULTS: Compared with healthy controls, plasma exosomes from sepsis patients showed significant changes in 25 miRNAs; eight miRNAs were upregulated and 17 downregulated. Additionally, the levels of hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p were significantly lower in sepsis patients than in healthy controls (p < 0.0001). These four miRNAs were confirmed in an external validation cohort. In addition, the most common pathway for these four miRNAs were PI3K-Akt and mitogen-activated protein kinase (MAPK) signaling pathways based on the KEGG analysis. The area under the ROC of hsa-let-7f-5p, miR-331-3p, miR-301a-3p, and miR-335-5p level for in-hospital mortality was 0.913, 0.931, 0.929, and 0.957, respectively (p < 0.001), as confirmed in an external validation cohort. Also, the Kaplan-Meier analysis showed a significant difference in 90-day mortality between sepsis patients with high and low miR-335-5p, miR-301a-3p, hsa-let-7f-5p, and miR-331-3p levels (p < 0.001, log-rank test). CONCLUSION: Among the differentially-expressed miRNAs detected in microarrays, the top four downregulated exosomal miRNAs (hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p) were identified as independent prognostic factors for in-hospital and 90-day mortalities among sepsis patients. Bioinformatics analysis demonstrated that these four microRNAs might provide a significant contribution to sepsis pathogenesis through PI3K-Akt and MAPK signaling pathway.

2.
Comput Biol Med ; 161: 106986, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230014

RESUMO

Damage to the sensory hair cells in the cochlea is a major cause of hearing loss since human sensory hair cells do not regenerate naturally after damage. As these sensory hair cells are exposed to a vibrating lymphatic environment, they may be affected by physical flow. It is known that the outer hair cells (OHCs) are physically more damaged by sound than the inner hair cells (IHCs). In this study, the lymphatic flow is compared using computational fluid dynamics (CFD) based on the arrangement of the OHCs, and the effects of such flow on the OHCs is analyzed. In addition, flow visualization is used to validate the Stokes flow. The Stokes flow behavior is attributed to the low Reynolds number, and the same behavior is observed even when the flow direction is reversed. When the distance between the rows of the OHCs is large, each row is independent, but when this distance is short, the flow change in each row influences the other rows. The stimulation caused by flow changes on the OHCs is confirmed through surface pressure and shear stress. The OHCs located at the base with a short distance between the rows receive excess hydrodynamic stimulation, and the tip of the V-shaped pattern receives an excess mechanical force. This study attempts to understand the contributions of lymphatic flow to OHC damage by quantitatively suggesting stimulation of the OHCs and is expected to contribute to the development of OHC regeneration technologies in the future.


Assuntos
Células Ciliadas Auditivas Externas , Hidrodinâmica , Humanos , Células Ciliadas Auditivas Externas/fisiologia , Cóclea/fisiologia , Células Ciliadas Auditivas Internas/fisiologia
3.
Biomedicines ; 10(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36289650

RESUMO

Mitochondrial DNA (mtDNA) has been identified as a biomarker for predicting sepsis mortality. Although preclinical studies suggested that necroptosis could explain the mechanistic link of mtDNA in sepsis, this is not yet evident in patients with sepsis. This study evaluated the association between mtDNA and essential necroptosis mediators in prospectively enrolled patients with sepsis. Plasma mtDNA copy number was measured using quantitative PCR assay and necroptosis mediators, including receptor-interacting protein kinase-3 (RIPK3), mixed lineage domain-like pseudokinase (MLKL), and high-mobility group box 1 (HMGB1), were measured by ELISA. Receiver operating characteristic (ROC) analysis was conducted to evaluate the predictive ability of mtDNA copy number as a predictor of hospital mortality. Among the 142 patients with sepsis, the mtDNA copy number was significantly higher in non-survivors than in survivors (median, 4040 copies/µL vs. 2585 copies/µL; p < 0.001), and the area under the ROC curve was 0.73 (95% CI, 0.64−0.82) for the relationship between mtDNA and hospital mortality. Furthermore, the correlation between mtDNA copy number and each necroptosis mediator was excellent (p < 0.001 for all): RIPK3 (r = 0.803), MLKL (r = 0.897), and HMGB1 (r = 0.603). The plasma mtDNA copy number was highly correlated with essential necroptosis mediators, suggesting that mtDNA propagates necroptosis and increases sepsis mortality.

4.
Biomed Eng Lett ; 12(4): 393-400, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36238371

RESUMO

In recent years, the potential of nanobubbles (NBs) for biological activation has been actively investigated. In this study, we investigated the proliferative effects of nitrogen NBs (N-NBs) on fibroblast cells using cell assays with image analysis and flow cytometry. A high concentration of N-NBs (more than 4 × 108 NBs/mL) was generated in Dulbecco's modified Eagle's medium (DMEM) using a gas-liquid mixing method. In image analysis, the cells were counted and compared, which showed an 11% increase in cell number in the culture medium with N-NBs. However, in two further cell cytometry analyses, the effect of nanobubbles on cell division was found to be insignificant (approximately 2%); as there is insufficient evidence that N-NB is involved in cell division mechanism, further studies are needed to determine whether NB affects other cellular mechanisms such as apoptosis. This study presents the first successful attempt of directly generating and quantifying N-NBs in a culture medium for cell culture. The findings suggest that the N-NBs in the culture medium can potentially facilitate cell proliferation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-022-00242-y.

5.
Sci Rep ; 11(1): 20300, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645935

RESUMO

CD63 is one of the tetraspanin protein family members that is ubiquitously expressed on exosomes and is involved in the signal transduction of various types of immune cells. It may thus contribute to immunometabolic mechanisms of cellular and organ dysfunction in sepsis. Nonetheless, the association of exosomal CD63 with the severity and mortality of sepsis is not well known. Therefore, in the present study, the overall levels of exosomal CD63 were evaluated to ascertain whether they were associated with organ failure and mortality in patients with sepsis. Exosomal CD63 was measured from prospectively enrolled critically-ill patients with sepsis (n = 217) and healthy control (n = 20). To detect and quantify exosomes in plasma, a commercially available enzyme-linked immunosorbent assay kit was used according to the manufacturer's protocol. The total number of exosomal CD63 was determined by quantifying the immunoreactive CD63. The association between plasma levels of exosomal CD63 and sequential organ failure assessment (SOFA) score was assessed by a linear regression method. The best cut-off level of exosomal CD63 for 28-day mortality prediction was determined by Youden's index. Among 217 patients with sepsis, 143 (66%) patients were diagnosed with septic shock. Trends of increased exosomal CD63 levels were observed in control, sepsis, and septic-shock groups (6.6 µg/mL vs. 42 µg/mL vs. 90 µg/mL, p < 0.001). A positive correlation between exosomal CD63 and SOFA scores was observed in patients with sepsis (r value = 0.35). When patients were divided into two groups according to the best cut-off level, the group with higher exosomal CD63 levels (more than 126 µg/mL) was significantly associated with 28-day and in-hospital mortality. Moreover, the Kaplan-Meier survival method showed a significant difference in 90-day survival between patients with high- and low-exosomal CD63 levels (log-rank p = 0.005). Elevated levels of exosomal CD63 were associated with the severity of organ failure and predictive of mortality in critically ill patients with sepsis.


Assuntos
Estado Terminal , Exossomos/metabolismo , Sepse/sangue , Choque Séptico/sangue , Tetraspanina 30/sangue , Idoso , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Prognóstico , Estudos Prospectivos , Curva ROC , Sistema de Registros , Sepse/mortalidade , Choque Séptico/mortalidade , Tetraspaninas , Resultado do Tratamento
6.
Sci Rep ; 11(1): 9512, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947887

RESUMO

The role of high-mobility group box-1 (HMGB1) in outcome prediction in sepsis is controversial. Furthermore, its association with necroptosis, a programmed cell necrosis mechanism, is still unclear. The purpose of this study is to identify the association between the plasma levels of HMGB1 and the severity and clinical outcomes of sepsis, and to examine the correlation between HMGB1 and key executors of necroptosis including receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain-like- (MLKL) proteins. Plasma HMGB1, RIPK3, and MLKL levels were measured with the enzyme-linked immunosorbent assay from the derivation cohort of 188 prospectively enrolled, critically-ill patients between April 2014 and December 2016, and from the validation cohort of 77 patients with sepsis between January 2017 and January 2019. In the derivation cohort, the plasma HMGB1 levels of the control (n = 46, 24.5%), sepsis (n = 58, 30.9%), and septic shock (n = 84, 44.7%) groups were significantly increased (P < 0.001). A difference in mortality between high (≥ 5.9 ng/mL) and low (< 5.9 ng/mL) HMGB1 levels was observed up to 90 days (Log-rank test, P = 0.009). There were positive linear correlations of plasma HMGB1 with RIPK3 (R2 = 0.61, P < 0.001) and MLKL (R2 = 0.7890, P < 0.001). The difference in mortality and correlation of HMGB1 levels with RIPK3 and MLKL were confirmed in the validation cohort. Plasma levels of HMGB1 were associated with the severity and mortality attributed to sepsis. They were correlated with RIPK3 and MLKL, thus suggesting an association of HMGB1 with necroptosis.


Assuntos
Proteína HMGB1/sangue , Necroptose/fisiologia , Necrose/sangue , Necrose/patologia , Sepse/sangue , Sepse/patologia , Idoso , Apoptose/fisiologia , Estado Terminal/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Necrose/mortalidade , Prognóstico , Estudos Prospectivos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sepse/mortalidade , Choque Séptico/sangue , Choque Séptico/mortalidade , Choque Séptico/patologia
7.
Shock ; 56(4): 544-550, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577245

RESUMO

INTRODUCTION: Levels of the apoptosis regulator Fas ligand (FasL) are associated with severity of sepsis, but its association with the mortality of sepsis and necroptosis, a regulated cell death mechanism, is not yet clear. We aimed to assess the association of FasL level with outcomes of sepsis and receptor interacting protein kinase-3 (RIPK3), an essential necroptosis mediator, for determining the relationship between FasL and necroptosis. METHODS: Plasma FasL and RIPK3 levels were measured by ELISA from prospectively enrolled critically ill adult patients. The best cut-off level of FasL for 28-day mortality prediction was determined by Youden's index. The association between plasma levels of FasL and RIPK3 was assessed by a linear regression method. RESULTS: Among 188 patients, 58 (30.9%) were diagnosed with sepsis and 84 (44.7%) with septic shock, respectively. Plasma levels of FasL increased in the group order of control, sepsis, and septic shock groups (P for trend < 0.001). For 142 patients with sepsis, organ dysfunction and septic shock were more prevalent in the group with plasma FasL levels that were higher than the best cut-off level. A significant difference in mortality between high and low FasL patients was observed up to 90 days (Log-rank P = 0.013). FasL levels did not significantly change over day 3 and day 7. FasL levels were not correlated with those of RIPK3. CONCLUSIONS: The plasma level of FasL was associated with severity of sepsis and was predictive of mortality. However, it was not correlated with RIPK3 level.


Assuntos
Proteína Ligante Fas/sangue , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Choque Séptico/sangue , Choque Séptico/mortalidade , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Choque Séptico/diagnóstico , Taxa de Sobrevida
8.
Biofabrication ; 12(4): 045031, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975217

RESUMO

In vivo cells express their characteristics in three-dimensional (3D) microenvironments via cell-cell interactions through autocrine, contact-dependent, paracrine, and synaptic signaling, often between heterologous cell types. Various in vitro 3D microwell-based culture methods have been proposed to further identify cellular characteristics by recreating cellular environments, typically in the form of spheroids and organoids, thereby realizing contact-based cell-cell interactions. However, in vivo cells generally exhibit multiple cellular interaction modes that have not been completely evaluated using existing microwell-based methods. This has led to a demand for more advanced and comprehensive methods. This study introduces a novel apparatus, the membrane-bottomed microwell (MBM) for non-contact co-cultures and 3D cell cultures. The MBM is a combination of a Transwell and a microwell array; these have previously been utilized to facilitate heterologous cell co-culturing and spheroid 3D cell culturing, respectively. In the Transwell insert, the lower part of the MBM is immersed in the culture media in which the cells are being two-dimensionally (2D) cultured, and the spheroids of the MBM are affected by the 2D cultured cells via the membrane at the bottom of the microwell. Here, we describe the methods for manufacturing the MBM in detail and elucidate the results of simulations of diffusion through the bottom of the membrane. We validate the proposed MBM for the spheroid culture of spermatogonial stem cells (SSCs), which had previously been 2D co-cultured with Sandos inbred mouse (SIM)-derived 6-thioguanine- and ouabain-resistant (STO; a mouse embryonic feeder cell line) feeder cells. The proposed system is shown to facilitate successful SSC spheroid culturing with paracrine signaling of STOs through an apparatus that simplifies both the loading and the evaluation processes; therefore, we believe that our findings will enable a more comprehensive understanding of SSCs and associated phenomena and that our system can be applied to various in vitro cell and tissue experiments.


Assuntos
Técnicas de Cultura de Células , Células Alimentadoras , Células-Tronco , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos
9.
J Cell Mol Med ; 24(16): 9439-9445, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32639098

RESUMO

Current sepsis biomarkers may be helpful in determining organ failure and evaluating patient clinical course; however, direct molecular biomarkers to predict subsequent organ failure have not yet been discovered. Exosomes, a small population of extracellular vesicles, play an important role in the inflammatory response, coagulation process and cardiac dysfunction in sepsis. Nonetheless, the association of plasma exosome with severity and mortality of sepsis is not well known. Therefore, the overall levels of plasma exosome in sepsis patients were assessed and whether exosome levels were associated with organ failure and mortality was evaluated in the present study. Plasma level of exosomes was measured by ELISA. Among 220 patients with sepsis, 145 (66%) patients were diagnosed with septic shock. A trend of increased exosome levels in control, sepsis and septic shock groups was observed (204 µg/mL vs 525 µg/mL vs 802 µg/mL, P < 0.001). A positive linear relationship was observed between overall exosome levels and Sequential Organ Failure Assessment (SOFA) score in the study cohorts (r value = 0.47). When patients were divided into two groups according to best cut-off level, a statistical difference in 28- and 90-day mortality between patients with high and low plasma exosomes was observed. Elevated levels of plasma exosomes were associated with severity of organ failure and predictive of mortality in critically ill patients with sepsis.


Assuntos
Biomarcadores/sangue , Exossomos/patologia , Insuficiência de Múltiplos Órgãos/mortalidade , Sepse/complicações , Índice de Gravidade de Doença , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Prognóstico , Taxa de Sobrevida
10.
J Clin Med ; 9(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492832

RESUMO

Recent studies have suggested that TNF-related apoptosis-inducing ligand (TRAIL) is associated with mortality in sepsis, possibly through necroptosis. The objective of this study was to analyze the association between the plasma level of TRAIL and sepsis severity and outcomes. Furthermore, the plasma level of TRAIL was compared to that of receptor-interacting protein kinase-3 (RIPK3), a key executor of necroptosis, to identify any correlation between TRAIL and necroptosis. Plasma levels of TRAIL and RIPK3 from consecutively enrolled critically ill patients were measured by ELISA. Of 190 study patients, 59 (31.1%) and 84 (44.2%) patients were diagnosed with sepsis and septic shock, respectively. There was a trend of decreased plasma level of TRAIL across the control, sepsis, and septic shock groups. For 143 patients with sepsis, patients with low plasma TRAIL were more likely to have septic shock and higher SAPS3 and SOFA scores. However, no difference in 28-day and 90-day mortalities was observed between the two groups. The plasma level of TRAIL was inversely associated with RIPK3 in patients with sepsis. Plasma levels of TRAIL increased over time on days three and seven, and were inversely associated with sepsis severity and RIPK3 level, but not with mortality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...